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the effect of the damping on the wave polarization and on the background plasma acceleration are investigated
as a function of the wave amplitude.
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I. INTRODUCTION

The production of electron-positron pairs attracts great at-
tention because it is a nonlinear effect that lies beyond the
limits of perturbation theory. The study of this effect can
shed light on the nonlinear properties of the quantum elec-
trodynamicssQEDd vacuum.

This effect was first predicted for the case of a constant
electric field more than 60 years agof1g ssee alsof2,3gd. It is
well known that a plane electromagnetic wave cannot pro-
duce electron-positron pairs because both its electromagnetic
invariants,sE2−B2d /2 andE ·B, are equal to zero. For this
reason this effect was first considered in the case of a con-
stant electric field, in which case the first invariantsE2

−B2d /2 does not vanish. Later, this analysis was extended to
the case of a spatially homogeneous time-varying electric
field f4–8g, but these results were long believed to be of
academic interest only, because the power of the laser sys-
tems available at that time was far below the limit for pair
production to become experimentally observablef6,9,10g.
However the recent development of laser technology has re-
sulted in the increase of the power of optical and infrared
lasers by many orders of magnitudef11g. Presently, lasers
systems are available that can deliver pulses with intensities
of the order of 1022 W/cm2 in the focal spot. Such intensities
are still much smaller than the characteristic intensity for pair
productionISch=4.631029 W/cm2, which corresponds, for a
laser pulse with wavelength<1 mm, to an electric field
equal to the critical Schwinger field ESch=1.32
31016 V/cm. Nevertheless, there are projects that aim to
reach intensities as high as 1026−1028 W/cm2 already in the
coming decade. In addition, several methods for reaching the
critical intensity with presently available systems have been
proposed recently. One of these schemes was demonstrated
in the experiments at SLAC where 1018 W/cm2 laser pho-
tons, backscattered by a 46.6 Gev electron beam, interacted

with the laser pulse and several electron-positron pairs were
detectedf12g. Another scheme for reaching critical intensi-
ties was suggested in Ref.f13g, where the interaction of the
laser pulse with electron density modulations in a plasma,
produced by a counterpropagating breaking wake plasma
wave, results in the frequency up-shift and pulse focusing. In
this scheme intensities of the order of the critical density can
be obtained using 1018 W/cm2 laser pulses. Hence, a more
detailed study of the Schwinger effect in time-varying elec-
tromagnetic fields and of all the processes that accompany it
has become an urgent physical problem from an experimen-
tal point of view also.

The process of electron-positron pair production by elec-
tromagnetic fields that are solutions of the Maxwell equa-
tions in a plasma and in vacuum was studied recently in
Refs. f14,15g. In Ref. f15g it was shown that already for
intensities of the laser pulse smaller than the critical inten-
sity, the energy loss due to pair production is of the same
order of the energy storied in the pulse. Therefore it is no
longer possible to consider the electromagnetic field in the
pulse as an external field and the energy loss by the electro-
magnetic field due to pair production and particle accelera-
tion must be taken into account.

The problem of the backreaction of the produced particles
on the background field was discussed extensively in a num-
ber of papers on the particle formation process in high en-
ergy hadronic interactionsf16–19g as well as under the ac-
tion of electric fieldsf20,21g. In the former case this process
can be viewed as the quantum tunneling of quark-antiquark
and gluon pairs in the presence of the background color-
electric field of quantum chromodynamicssQCDd. Such a
color field is formed between two receding nuclei which are
color charged by the exchange of soft gluons at the time of
collision. This leads to the formation of a very strong color-
electric field and, hence, to more copious pair production. It
was understood that, in solving a dynamical problem with a
strong initial electric field, the effect of the produced par-
ticles on the electric fieldsthe back reactiond should be taken
into consideration. The quark-gluon plasma emerging
through tunneling in nucleus-nucleus collisions will change
the color-electric field due to the appearance of conduction
and polarization currents. The first current is due to the par-
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ticle motion in the field while the latter arises from the pro-
cess of pair creation. A kinetic equation coupled to Maxwell
equations was used to solve this problem. The pair produc-
tion process was considered as if occurring in QED, and the
color-electric field was assumed to be Abelian, spatially ho-
mogeneous and time-dependent. However a spatially homo-
geneous time dependent electric field is not a solution of
Maxwell equations in vacuum. We also note that in Refs.
f16–21g special attention was paid to the properties of the
emerging plasma, while the properties of the background
field were not studied in detail.

In the present paper, we consider the process of electron-
positron pair production in a cold collisionless plasma, under
the action of a electromagnetic field which is an actual solu-
tion of the Maxwell equations, as well as the backreaction of
the produced pairs on the background field. In doing so we
use the Boltzmann-Vlasov equation, with a source term ob-
tained from the pair production ratef16–18g. In order to
elucidate the role of the magnetic field component on the
electron-positron pair production, we consider a planar, cir-
cularly polarized, electromagnetic wave propagating in an
underdense collisionless plasmasfor the sake of simplicity
we consider an electron-positron plasmad. In the case of a
plane wave in a plasma the first field invariantsE2−B2d /2 is
not equal to zero due to the different dispersion equation
with respect to that in vacuum. Therefore, in a plasma,
electron-positron pairs can be produced by a plane electro-
magnetic wave, as was shown in Ref.f14g. In this case a
Lorentz transformation to the reference frame moving with
the group velocityvg of the wave transforms the electromag-
netic field into a purely electric field, that rotates with con-
stant frequency, and with no associated magnetic field. Al-
though this transformation reduces the problem under
consideration to the situation where the pairs are produced
by a time-varying electric field, the effects of the wave mag-
netic field are incorporated rigorously into our model. We
notice that a similar approach was used earlier in Ref.f22g.
However in this latter paper a linearly polarized electromag-
netic wave was considered and an approximation was
adopted that is only valid in the limit of a small amplitude
electromagnetic field.

In the present paper we consider the effect on the back-
ground wave in the plasma caused by the pairs produced by
the wave through their polarization and conduction currents.
In particular, by considering the interaction between the
wave and the plasma as an initial value problem in the mov-
ing frame, we study the evolution of the wave electromag-
netic field. Due to the nonlinear properties of the equations
governing the field evolution in time, we find a strong non-
linear dependence of wave field properties on the wave ini-
tial amplitude. We find a nonlinear up-shift of the wave fre-
quency, a change of its polarization state and damping of its
amplitude. In order to exemplify these effects, we consider
two limiting cases of the electric field evolution. In the first
limit the amplitude of the initial electric field is assumed to
be so large that most of the electron-positron pairs are pro-
duced instantaneously. This leads to an instantaneous change
of the electric field amplitude and frequency. In the second
limit we consider a regime where the pair production rate is
relatively small, so that all parameters of the wave change

slowly. In this case we see the wave amplitude damp with
time.

This paper is organized as follows. In Sec. II we review
some well known properties of a strong electromagnetic
wave in a plasma. In Sec. III we study the equations govern-
ing the process of pair production and the evolution of the
electromagnetic wave. In Secs. IV and V we consider two
limiting cases: fast changing field and slow changing field.
The main results and conclusions are presented in Sec. VI.

II. RELATIVISTICALLY STRONG ELECTROMAGNETIC
WAVE IN A PLASMA

First, we recover the properties of a relativistically strong
electromagnetic wave propagating in an underdense colli-
sionless electron-positron plasma that are needed in order to
determine the form of the time varying electric field. This
discussion is based on the results obtained by Akhiezer and
Polovin in Ref.f23g. We consider a circularly polarized elec-
tromagnetic wave, propagating in an electron-positron
plasma. In the following we use thec=1 and"=1 conven-
tion.

An electromagnetic wave propagating in a plasma has a
group velocity smaller than the speed of light in vacuum.
Thus it is possible to make a transformation to the reference
frame moving with the wave group velocityvg. In this frame
the magnetic field of the wave vanishes and its time-varying
electric field is spatially homogeneous and is thus governed
by the equation

dE

dt
= − 4pj = − 4p o

a=+,−

ea

s2pd3 E vafasp,tdd3p, s1d

where v=p / sm2+p2d1/2, p= upu=spx
2+py

2+pz
2d1/2, fasp ,td is

the positronselectrond distribution function, normalized such
thatefasp ,tdd3 p/ s2pd3=na gives the numberna of electrons
or positrons per unit volume, andea is their electric charge
with a=+ for the positrons anda=− for the electrons. We
consider the case of an electrically quasineutral plasma,
where the density of positrons is equal to the density of elec-
trons,n+=n−=n0, with n0 the density in the moving frame. If
we assume that the plasma is cold, i.e., that the particle dis-
tribution function of the speciesa can be written as
fasp ,td=nas2pd3d(p−pastd), the system of equations for the
electric field evolution in the moving frame reduces to

dE

dt
= − 4pn0 o

a=+,−
eava, s2d

dpa

dt
= eaE, with va =

pa

sm2 + pa
2d1/2. s3d

We assume symmetric initial conditions, so that the positron
and the electron momentap±,' perpendicular to the direction
of propagation of the laser pulse have opposite signs and
equal absolute value,p+,'=−p−,'=p', while they have
equal parallel momentumpi=pi,0. Here the nonzero value
pi,0=−mvggg of the parallel momentum is due to the Lorentz
transformation from the laboratory to the moving frame and
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gg=s1−vg
2/c2d−1/2. For these initial conditions and for a cir-

cularly polarized pulse, the square of the electron momentum
p2= upu=spx

2+py
2+pz

2d is constant in time and the solution of
the equation of motion

d2p'

dt2
= −

8pe2n0p'

sm2 + p2d1/2 s4d

for the particle perpendicular momentump±,', which is ob-
tained by combining Eqs.s2d and s3d, is simply given by

p' = − Psex cosVt + ey sinVtd,

A = A0sex cosVt + ey sinVtd, s5d

whereA is the vector potential,A0=P/e and

V = F 8pe2n0

sm2 + P2 + pi,0
2 d1/2G1/2

s6d

is the Langmuir frequency which enters the dispersion equa-
tion of an electromagnetic wave propagating in a plasma. In
this moving frame the wave electric field is given by

E = VA0sex sinVt − ey cosVtd. s7d

Note that, since in the moving frame the wave number of the
oscillating laser field is zero, its frequency coincides with the
Langmuir frequency. In the laboratory frame instead the
wave dispersion equation is given by

v2 = k2 + V2, s8d

where V can be reexpressed in terms of the electron and
positron densitiesn=n0/gg and of the particle energysm2

+P2d1/2 in the laboratory frame asV=fs8pe2nd / sm2

+P2d1/2g1/2. The phase and group velocities of a nonlinear
electromagnetic wave in a plasma depend on the plasma pa-
rameters and on the wave amplitude. From Eq.s8d we find
that the phase velocityvph=v /k and the group velocityvg
=]v /]k, are related according to expressionvphvg=1. In the
laboratory frame the electric and the magnetic fields are
given by

E = − ]tA = vA0fex sinsvt8 − kxd − ey cossvt8 − kxdg, s9d

B = = 3 A = kA0fex cossvt8 − kxd − ey sinsvt8 − kxdg,

s10d

respectively, witht8 the time in the laboratory frame.
We see that in a plasma the first invariant of the electro-

magnetic fieldF=sE2−B2d /2 is not equal to zero and is
given by

F =
V2

2
A0

2 ;
1

2
SV

v
D2

E0
2. s11d

It vanishes when the plasma density tends to zero, i.e., in
vacuum. In the following we shall use the notationE
=sVA0d;sV /vdE0.

In Ref. f22g the model case of a linearly polarized wave
was considered. However a finite amplitude linearly or ellip-
tically polarized wave propagating in a plasma has both

transversal and longitudinal components, which oscillate at
different frequenciesssee, e.g., Ref.f24gd. Thus the problem
of the pair production by a linearly polarized wave is more
complicated to solve.

III. KINETIC DESCRIPTION OF THE ELECTRON-
POSITRON PAIR PLASMA

We consider the propagation of a circularly polarized
electromagnetic wave in an underdense collisionless plasma
in the reference frame moving with the wave group velocity
vg. The relativistic kinetic equation

]fa

]t
+ eaE ·

]fa

]p
= qasE,pd, s12d

describes the dependence on time and momentum of the dis-
tribution function fasp ,td in this moving frame where a spa-
tially homogeneous electric fieldE is present. The source
term in Eq. s12d is proportional to the quasiclassical prob-
ability

expF−
psm2 + p'

2 d
ueEstdu G s13d

of tunneling through the gap between the lower and the up-
per continuum of electron energy spectrum in the presence of
the electric field. We note that the form of Eq.s13d corre-
sponds to the case of constant fieldf2g. However, the char-
acteristic time of pair productionc/ lc, where lc=" /mc is
electron Compton wavelength, is negligible with respect to
the wave period. This estimate gives a lower bound on the
pair production time while the estimate that follows from the
quasiclassical approximation gives for the time of sub-barrier
motion ttun=1/av f7,14g, wherea=eA/mc is the dimension-
less amplitude of vector potential. However, fora@1 sthe
case we are consideringd, even this estimate yields a pair
production time much shorter than the wave period. Thus, it
is possible to use Eq.s13d for the time-varying electric field
with time playing the role of a parameter. In addition, fol-
lowing the reasoning of Refs.f16–18g, we assume that the
pairs are produced at rest, i.e., the momentum distribution of
the source term is taken to be proportional to the Dirac delta
function

qasE,pd =
e2Estd2

2
expF−

pm2

ueEstduGdspd. s14d

This assumption is reinforced by the fact that the momentum
distribution in Eq. s13d has a width p',fueEstdug1/2

=mfuestdug1/2!m which is negligible with respect to the mo-
mentum that electronsspositronsd acquire in the electric
field. Hereh=eE /m2=E /ESch!1 is the normalized electric
field and Esch=m2/e is the critical Schwinger field. The
source term has been normalized in such way that
eqasE,pdd3p/ s2pd3 gives the number fseEd2/4p3g
3expf−pm2/eEg of positronsselectronsd produced accord-
ing to Schwinger’s formula.

We solve Eq.s12d by integrating it along the particle char-
acteristics. The equations for the characteristics for each spe-
ciesa are
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pi = pi,0,
dp'

dt
= eaE,

dfa

dt
= qa. s15d

Introducing the functionAstd=−e0
t Essddsby integratingEstd

over time, we obtain

p' = eaE
0

t

Essdds+ p'0, i.e., p' + eaAstd = p'0.

s16d

As a result the distribution function is given by the following
expression

fa = fa,0„pi,p' + eaAstd… +E
0

t

qahp' + eafAstd

− Ast8dg,t8jdt8, s17d

where fa,0spu i ,p'd is the distribution function of the initial
plasma positronsselectronsd before the passage of the elec-
tromagnetic wave. Let us assume that at the initial timet
=0 the plasma is cold so that

fa,0 = n0s2pd3dsp'ddspi − pi,0d, s18d

where we recall thatpi is the component of the particle mo-
mentum parallel to the electromagnetic wave propagation
and pi,0 is its initial value which arises from the Lorentz
transformation from the laboratory to the moving frame.

The modification of the kinetic equation given by the
source term in Eq.s14d must also be accompanied by a
change of the source term in Maxwell equations. The
electron-positron pair production by a spatially homoge-
neous time-varying electric field leads to the appearance of a
time-dependent electric dipole which generates a polariza-
tion current. Thus the current density in Eq.s1d acquires an
additional term with respect to the situation when no pair
production is present. Then Eq.s2d reads asf18g

dE

dt
= − 4pj tot = − 4psj cond+ j pold, s19d

where the conduction current is

j condstd = e o
a=+,−

E fasp,td
p

sm2 + p2d1/2

d3p

s2pd3 , s20d

and the polarization current isf16g ssee the Appendix for
detailsd

j polstd =
Estd

uEstdu2 o
a=+,−

E qasp,tdsm2 + p2d1/2 d3p

s2pd3 . s21d

Using the distribution functions17d, we obtain the following
expressions for the current densities

j condstd = − 2e2n0
Astd

fm2 + pi0
2 + e2A2stdg1/2

− 2e2E
0

t Astd − Ast8d
fm2 + e2uAstd − Ast8du2g1/2

ueEst8du2

8p3

3expF−
pm2

ueEst8duGdt8, s22d

j polstd =
e2m

2p2EstdexpF−
pm2

ueEstduG , s23d

whereA= uAstdu. In performing the momentum space integra-
tion we have used the fact that the pairs are produced with
zero momentum. Inserting these expressions for the current
densities into the right-hand side of Eq.s19d and using the
dimensionless vector potentiala=eA /m and the normalized
electric fieldh=eE /m2, we obtain the equation for the elec-
tric field evolution in the presence of pair production

dastd
dt

= − mhstd,

m
dhstd

dt
= vp

2 astd
f1 + p̃i0

2 + a2stdg1/2

+ kE
0

t astd − ast8d
f1 + uastd − ast8du2g1/2

uhst8du2

8p3

3expF−
p

uhst8duGdt8 −
em3

2p2hstdexpF−
p

uhstduG ,

s24d

wherevp=s8pe2n0/md1/2 is the nonrelativistic Langmuir fre-
quency, p̃i0;pi0/m and k=8pe2m4, where the factorm4

stands for the inverse of the invariant Compton 4-volume
m4=c/ lc

4<0.1431053 cm−3 s. Similar equations were ob-
tained in Refs.f18g, where however there was no initial dis-
tribution function and a spatially homogeneous electric field
in vacuum was used, which is not a solution of Maxwell’s
equations.

The nonlinear integro-differential equations24d cannot be
solved analytically. Numerical solutions of this equation are
presented in Fig. 1 for different initial amplitudes. We can
see that the process of electron-positron pair production
leads to the damping of the wave in the plasma and to the
nonlinear up-shift of its frequency. The damping is due to the
fact that each pair creation takes a portion of the field energy
equal to 2mc2 as well as the amount needed for the particle
acceleration. The up-shift of the field frequency is due to the
increase of the plasma density, and thus of the Langmuir
frequency, as new pairs are created. This frequency up-shift
is seen in Fig. 1, and bears a strong resemblance to the blue-
shift of an electromagnetic wave that propagates in a me-
dium that becomes ionized, as investigated theoretically in
Refs.f25g and experimentally in Refs.f26g.

Since the pair production rate depends on the field ampli-
tude exponentially, an unbalanced damping of the field
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components can occur and lead to a change of the field po-
larization. We should also note that the decrease of the am-
plitude of the vector potential is accompanied by a frequency
up-shift, so that the decrease of the amplitude of the electric
field is not as fast as that of the vector-potential. These prop-
erties of the electric field are shown in Fig. 2, where the
projections of the polarization vector are presented for the
same set of initial parameters as in Fig. 1. In Fig. 2sad we see
the damping of thex component of the electric field and the
transition from circular to elliptic polarization with the major
axis of the ellipse directed along they axis. In addition, in
Fig. 2sbd we see a rotation of the principal axes of the ellipse.
The rotation of the principal axes of the polarization ellipse
was discussed in Ref.f24g in the case of the free propagation

swithout source termsd of an elliptically polarized nonlinear
pulse in a plasma. The situation shown in Fig. 2scd is differ-
ent from the two previous ones. In this latter case the pair
production rate at the beginning of the field evolution is so
largefsee Fig. 3scdg that the first wave oscillation cycle can-
not be completed, leading to oscillations of thex component
of the wave vector potential around a nonzero mean value
determined by the balance between the time averaged parts
of the first two terms on the right-hand side of the second of
Eqs.s24d. This shift of the center of the oscillations of thex
component of the vector potential leads to a reduction of the
oscillation frequency of this wave component so that, in this
case, thex and they components of the wave oscillate at
different frequencies.

FIG. 1. Time evolution in the moving frame of thex and they components of the dimensionless vector potential for different initial
amplitudes:a=1.43105 sad, sdd, a=1.53105 sbd, sed, a=1.93105 scd, sfd with initial plasma densityn0=1019 cm−3 in the moving frame;
vg<1; gg=10. The upper row shows thex component of the vector potential, the lower they component. On thex axis time is measured
in seconds;a=1 corresponds, for a 1mm wavelength pulse, to an intensity of 1018 W/cm2 anda=4.63105 to the Schwinger intensity.

DAMPING OF ELECTROMAGNETIC WAVES DUE TO… PHYSICAL REVIEW E 71, 016404s2005d

016404-5



The increase with time of the pair plasma density is
shown in Fig. 3 starting from an initial density before the
start of the pulse propagation. We see that the particle density
increases in steps as a function of time. This time depen-

dence is due to the oscillations of the amplitude of the elec-
tric field that occurs in an elliptically polarized wavessee
Fig. 2d. The electron-positron pairs are mainly produced near
the maxima of the electric field amplitude, while there is
practically no pair production in between. From these plots
we can also see that the frequency is up-shifted since the
width of the steps decreases with time. For the pulse ampli-
tude of framescd, the pair production occurs almost instan-
taneously at the beginning of the pulse evolution.

The difference between the above three cases is clearly
illustrated by the different shapes of the particle distribution
functions in thepx-py plane.sNote that the electron and the
positron distributions are one the mirror image of the other.d
In casessad and sbd electrons and positrons are mostly cre-

FIG. 2. Trajectories of the projections of the electric field polar-
ization vector for the same set of initial conditions as in Fig. 1.

FIG. 3. Dependence of the plasma electronspositrond density on
time for the same set of initial conditions as in Fig. 1 in the moving
frame:a=1.43105 sad, a=1.53105 sbd, anda=1.93105 scd. The
density is measured in units of 1019 cm−3 and time in seconds.
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ated at the maxima of the electric fielduEu sand thus of the
vector potentialuA ud. Since at birthp'=0, in the case of a
circularly polarized electric field this should lead to a ring
type distribution. However, since the wave polarization be-
comes elliptical because of the back reaction due to the pair
creation, the distribution function of each population con-
sists, in the canonical momentump'+eaA plane, mainly of
two blobs at ±eaAmax. In the px-py plane, these blobs move
according to the time evolution of the vector potentialA. On
the contrary the position of the initial distribution function
sdenoted by a dark dot in the figured corresponds top'

+eaA =0. In casescd the pairs are created mostly at the start
at p'+eaA =eaAst=0d. Since the time evolution ofAstd is
ergodic, as shown in Fig. 2, their distribution tends to be
randomized in thepx-py plane.sSee Fig. 4scd.d

The particle distribution function is shown in Fig. 5 ver-
sus the parallel momentumpi in the laboratory frame at time
t=2310−10 s. Note that in casescd the strong damping of the
wave due to the pair creation and the resulting nonadiabatic
interaction has lead to a strong acceleration of the particles in
the initial plasma. Such large values of the longitudinal mo-
mentum of electronsspositronsd in the laboratory frame are
due to the transverse acceleration of electronsspositronsd in
the moving frame. Performing the Lorentz transformation
back to the laboratory frame we obtain for the longitudinal
momentum in the laboratory frame of the initial electrons
and positronspi=ggfpio+vgs1+pio

2 + ua2ud1/2g<ggvguau where
we useduau@ upiou.

In summary, the production of electron-positron pairs by
the electromagnetic wave propagation in the plasma leads to

FIG. 4. The electron distribution functions versuspx andpy in the moving reference frame for the same set of initial conditions as in Fig.
1 at time 2310−10 s. Particle momenta are normalized on the dimensionless vector-potential amplitudea multiplied times 105. Black circles
correspond to the initial plasma particle distribution at time 2310−10 s.
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the up-shifting of the wave frequency and to the damping of
the wave amplitude and changes the polarization state of the
wave. In order to illustrate these effects analytically, we con-
sider two limiting cases of the electric field evolution, which
can be clearly distinguished on the basis of the results shown
in Fig. 1. First, we will consider the case of a fast changing
field when the initial electric field amplitude is so large that
the most of the electron-positron pairs is produced instantly.
This case can be illustrated by the results shown Fig. 1scd.
Then, we will consider the case of a slowly changing field,
when the pair production rate is relatively small and all
the parameters of the wave change slowly as illustrated in
Fig. 1sad.

IV. FAST CHANGING ELECTROMAGNETIC FIELD

We assume that the amplitude of the initial electric field is
so large that the electron-positron pair production and the
consequent change of the properties of the wave electric field
occur almost instantaneously. In this case we may approxi-
mate the time dependence of the source term as

qasE,p,td = tdstdqasE0,pd, s25d

whereE0 is the initial amplitude of the electric field andt
is a characteristic time defined such that the total number
of pairs produced is kept constant and given by
tsuh0u2/8p3dexpf−p / uh0ug per Compton 3-volumelc

3. Then, it
is possible to carry out the integration overt8 in the right-
hand side of Eq.s24d. As a result we obtain

d2a

dt2
+ vp

2 astd
f1 + pi0

2 + a2stdg1/2

= − kt
uh0u2

8p3 expF−
p

uh0uG astd − a0

f1 + uastd − a0u2g1/2. s26d

We note thata0 in Eq. s26d and the initial valueas0d of
the amplitude of the vector potential in Eq.s26d are con-
nected in an indirect way since the initial conditions for Eq.
s26d are determined by the value of the electric field after the
main part of the pair production has already taken place
when the amplitude of the field has been reduced so that it is
no longer capable of producing a significant amount of pairs.
Therefore the valuesa0, h0 that enter the right-hand side of
Eq. s26d should be considered as referring to the vector po-
tential and to the electric field at the instant when the pairs
are created. From these values we can deduce the value of
as0d using energy conservation and taking into account the
polarization current.

In order to understand the basic properties of the electric
field evolution described by Eq.s26d, it is convenient to lin-
earize it. To do so, we assume thata!1 and obtain

a9std + svp8
2 + kNdastd − kNa0 = 0, s27d

where N=tfuh0u2/8p3gexpf−p / uh0ug and vp8
2=vp

2/ s1
+p'0

2 d1/2. We see that Eq.s27d describes oscillations with
frequencysvp8

2+kNd1/2. Takinga0=sa0z,0d we obtain

axstd =
a0xkN

vp8
2 + kN

−
a0xkN

vp8
2 + kN

cosfsvp8
2 + kNd1/2tg

+ a1 cosfsvp8
2 + kNd1/2tg, s28d

aystd = − a1 sinfsvp8
2 + kNd1/2tg, s29d

where the initial conditions areas0d=sa1,0d, a8s0d
=(0,svp8

2+kNd1/2a1). Thus, Eqs.s28d and s29d describe an
elliptically polarized field oscillating with an upshifted fre-
quency, as consistent with the numerical solution of Eq.s24d.

V. SLOWLY CHANGING ELECTROMAGNETIC
FIELD

We assume that the pair production rate is small, so that
the parameters of the electromagnetic wave change slowly.

FIG. 5. The electron distribution functions versuspi in the labo-
ratory reference frame for the same set of initial conditions as in
Fig. 1 at time 2310−10 s. Momentum is measured in the same units
as in Fig. 4. The vertical lines correspond to the distribution of the
initial plasma particles.
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Then, we can neglectastd with respect toast8d, since, as the
wave amplitude decreases with time,astd becomes increas-
ingly small compared toast8d. Then, after differentiation
with respect to time, Eq.s24d reads

d3astd
dt3

+ vp
2 d

dt

astd
f1 + pi0

2 + a2stdg1/2

= k
astd

f1 + a2stdg1/2uhstdu2expF−
p

uhstduG . s30d

If we linearize Eq.s30d and set the pair production rate equal
to constant, we obtain

a-std +
vp

2

s1 + pi0
2 d1/2a8std − kWastd = 0, s31d

whereW= uēu2exps−p / uēud and ē is the electric field ampli-
tude averaged over the field evolution. The equations for
the two components of the vector potential are decoupled
and thus the polarization state is preserved. The solution of
Eq. s30d is

ax,ystd = C1x,y exps− iv1td + C2x,y exps− iv2td

+ C3x,y exps− iv3td, s32d

where the frequenciesvi si =1,2,3d are the roots of the third
order polynomial equationy3−yvp

2/ s1+pi0
2 d1/2+ ikW=0 and

the constantsCix,y are determined by the initial conditions. It
is obvious from the form of the polynomial equation that
one of its roots is imaginary and positive, while the other
two are complex. The two terms in the solution with com-
plex frequencies describe a damped wave, while the third
term corresponds to a spurious, exponentially growing, term
that can be excluded by an appropriate choice of the initial
conditions.

VI. CONCLUSION AND DISCUSSIONS

In the present paper we considered the problem of the
back reaction of the produced electron-positron pairs on the
electromagnetic wave. We showed that there is a loss of
wave energy due to the pair production and acceleration of
these pairs in the electromagnetic field of the wave.

We studied the propagation of a relativistically strong
electromagnetic wave in an underdense electron-positron
plasma. As is well known, a plane wave does not produce
electron-positron pairs in vacuum. However the situation
changes in a plasma. Due to the fact that in plasma the first
field invariantF does not vanish, a plane wave can produce
pairs that back react on the wave. In order to describe the
behavior of the electrons and positrons, we adopted a kinetic
plasma description and used the relativistic Boltzmann-
Vlasov equation. Solving this equation we obtained the dis-
tribution functions of electrons and positrons which we used
to derive the current density that enters the right-hand side of
Maxwell equation for the electric field. We note that all the
calculations were carried out in the reference frame moving
with the group velocity of the wave. In this frame there is no
magnetic field as the wave has only an electric field.

The solutions of the Maxwell equation for the evolu-
tion of the electric field in the plasma for different initial
amplitudes are shown in Fig. 1. We see that, when the pro-
cess of electron-positron pair production is taken into ac-
count, the evolution of the vector potential in the plasma
leads to the damping of the wave, accompanied by a nonlin-
ear shift of its frequency. The damping of the vector potential
is due to the pair production which takes away a portion of
the wave energy. This process is followed by the increase of
plasma density which leads to the up-shifting of the wave
frequency.

The damping of the vector-potential amplitude, together
with its frequency increase, gives rise to an interesting
phenomenon—the decrease of the wave amplitude followed
by the increase of its frequency. Pair production decreases
the wave amplitude while the growth of plasma density all
over the space causes the increase of the wave frequency
which is proportional to square root of the density. This ef-
fect resembles the case when the electromagnetic wave
propagates in an ionizing mediumf25g.

Since the pair production rate depends on the field ampli-
tude exponentially, an unbalanced damping of the field com-
ponents occurs and leads to the change of the wave polariza-
tion ssee Fig. 2d. One can clearly see the change of the
electric field polarization from circular to elliptic and the
decrease of one of the two electric field components.

Finally, we considered two limiting cases in order to iden-
tify the properties and the exact causes of this nonlinear be-
havior of the wave. In the first case the initial amplitude of
the electric field is so large that the pair production and the
change of the wave properties occur instantaneously. In the
second case the pair production rate is small so that the prop-
erties of the wave change slowly. In the first case we obtain
an electric field oscillating with a new frequency and ampli-
tude. The frequency increase is due to the fact that the den-
sity of plasma increases because of the pair production. In
the second case we obtain a damped wave with an amplitude
that decreases slowly with time. We see that the process of
electron-positron pair production leads to the damping of the
wave. There is a nonlinear shift of its frequency due to the
decrease of its amplitude: as a result the frequency is up-
shifted.
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APPENDIX: PROPERTIES OF THE POLARIZATION
CURRENT

The form of the polarization current can be derived from
the energy-conservation law. In order to calculate the expres-
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sion for the polarization current we calculate the second mo-
ment of the kinetic equations12d:

o
a=±

E fsm2 + p2d1/2 − mgH ]fa

]t
+ eaE ·

]fa

]p
Jd3p

= o
a=±

E fsm2 + p2d1/2 − mgqasE,pdd3p, sA1d

which we write as

]K

]t
− j cond·E = S − m

]n

]t
, sA2d

where

K = o
a=±

E fsm2 + p2d1/2 − mgfasp,tdd3p

is the kinetic energy of the plasma particles, and

jcond= eE p

sm2 + p2d1/2o
a=±

eafasp,tdd3p

is the conduction current. The second moment of the right-
hand side of the kinetic equation gives two terms. One of
them,m]n/]t, is related to the rest energy increase due to the
pair production, and another is equal to

S = o
a=±

E sm2 + p2d1/2qasE,pdd3p.

We can thus rewrite Eq.sA2d in the following form

]

]t
sK + nmd = j cond·E + S, sA3d

where the expression inside the brackets corresponds to the
full energy of the plasma particles. The energy balance equa-
tion for the electromagnetic field in the moving reference,
frame where only the electric field is present, can be obtained
by multiplying Eq.s19d by the vectorE

]

]t
S E2

8p
D = − j cond·E − j pol ·E. sA4d

Here we took into account that no external current is present
in our case. Adding Eqs.sA3d and sA4d we obtain

]

]t
SK + n +

E2

8p
D = − j pol ·E + S. sA5d

The expression inside the brackets in Eq.sA5d is the energy
of the system of the electromagnetic field and the plasma
electrons and positrons. Energy conservation requires the
right-hand side of Eq.sA5d to be zero. Thus the polarization
current should be of the form

j pol =
E

uEu2 o
a=±

E sm2 + p2d1/2qasp,tdd3p. sA6d
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